fig3

Review of evidence implicating the plasminogen activator system in blood-brain barrier dysfunction associated with Alzheimer's disease

Figure 3. Mechanisms by which tPA may disrupt the blood-brain barrier. (1) tissue-type plasminogen activator(tPA) released from neurons cleaves lipoprotein receptor-related protein-1 (LRP-1) to activate an NF-κB signaling cascade resulting in the production of MMP-9. tPA and LRP-1 can bind amyloid beta, which facilitates Aβ endocytosis across the blood-brain barrier (BBB). (2) Neuronal tPA degrades platelet-derived growth factor-CC (PDGF-CC) to release the active ligand for PDGF receptor-α (PDGFR-α) on astrocytic endfeet, causing them to retract from endothelial cells. (3) Plasma tPA activates plasmin to directly produce bradykinin that activates bradykinin 2 receptor (B2R) receptor on endothelial cells. (4) Plasma tPA cleaves plasminogen to generate plasmin that indirectly upregulates bradykinin expression through plasma kallikrein (PKal). Created with BioRender.com.

Ageing and Neurodegenerative Diseases
ISSN 2769-5301 (Online)

Portico

All published articles will be preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles will be preserved here permanently:

https://www.portico.org/publishers/oae/